篇一:(913)平行线的判定专项练习60题(有答案)ok
平行线的判定专项练习60题(有答案)
1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.
2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.
3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.
4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.
5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;
若不平行,请说明理由.
6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.
平行线的判定--- 第 1 页 共 1 页
7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,
求证:DE∥BC.
8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.
9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.
10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.
11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.
12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.
平行线的判定---
第 2 页 共 2 页
13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?
14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.
15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.
16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.
17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.
18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?
平行线的判定---
第 3 页 共 3 页
19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.
20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.
21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?
22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.
23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.
24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.
25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.
平行线的判定---
第 4 页 共 4 页
26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.
27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F, 求证:∠1=∠2.
28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.
29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.
30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.
31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF. 平行线的判定---
第 5 页 共 5 页
篇二:七年级平行线的判定与性质练习题带答案
平行线测试题 姓名:
一、选择题
1.下列命题中,不正确的是____ [ ]
A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行
B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行
C.两条直线被第三条直线所截,那么这两条直线平行
D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行
2.如图,可以得到DE∥BC的条件是______ [ ]
(2题)(5题)(3题)(7题) (8题)
A.∠ACB=∠BAC B.∠ABC+∠BAE=180° C.∠ACB+∠BAD=180° D.∠ACB=∠BAD
3.如图,直线a、b被直线c所截,现给出下列四个条件: (1)∠1=∠2(2)∠3=∠6(3)∠4+∠7=180° (4)∠5+∠8=180°, 其中能判定a∥b的条件是_________[ ]A.(1)(3) B.(2)(4)C.(1)(3)(4) D.(1)(2)(3)(4)
4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[ ]A.第一次向右拐40°,第二次向左拐40° B.第一次向右拐50°,第二次向左拐130°
C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°
5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ]
A.AD∥BC B.AB∥CD C.∠3=∠4 D.∠A=∠C
6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为( )
A.互相垂直 B.互相平行 C.相交 D.无法确定
7.如图,在平行四边形ABCD中,下列各式不一定正确的是( )
A.∠1+∠2=180° B.∠2+∠3=180° C.∠3+∠4=180° D.∠2+∠4=180°
8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为( )
A.30° B.60° C.90° D.120°
二、填空题 9.如图,由下列条件可判定哪两条直线平行,并说明根据.
(1)∠1=∠2, .(2)∠A=∠3,.
(3)∠ABC+∠C=180°.
10.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.
11.同垂直于一条直线的两条直线_______.同一平面内,不重合的两直线的位置关系是 。
12.如图,直线EF分别交AB、CD于G、H.∠1=60°,∠2=120°,那么直线AB与CD的关系是________,理由是:____________________________________________.
13.如图,AB∥EF,BC∥DE,则∠E+∠B的________.
三、解答题
14.已知:如图,∠1=∠2,且BD平分∠ABC.求证:AB∥CD.
15.(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?
(2)在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.
16.已知:如图,∠1=∠2,∠3=100°,∠B=80°.求证:EF∥CD.
17.已知AB∥CD,∠B=100°EF平分∠BEC, EG⊥EF ,求 ∠DEG的度数。
18.如图,∠1与∠D互余,CF⊥DF,试探究AB与CD的位置关系,并说明理由。
篇三:七年级平行线的判定与性质练习题带答案
平行线的判定与性质练习 2018.3
一、选择题
1.下列命题中,不正确的是____ [ ]
A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行
B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行
C.两条直线被第三条直线所截,那么这两条直线平行
D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行
2.如图,可以得到DE∥BC的条件是
______ [ ]
(2题)(3题)(5题)
A.∠ACB=∠BAC B.∠ABC+∠BAE=180° C.∠ACB+∠BAD=180° D.∠ACB=∠BAD
3.如图,直线a、b被直线c所截,现给出下列四个条件:
(1)∠1=∠2, (2)∠3=∠6, (3)∠4+∠7=180°,(4)∠5+∠8=180°,
其中能判定a∥b的条件是_________[ ]
A.(1)(3)B.(2)(4) C.(1)(3)(4) D.(1)(2)(3)(4)
4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[ ]
A.第一次向右拐40°,第二次向左拐40° B.第一次向右拐50°,第二次向左拐130°
C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°
5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ]
A.AD∥BC B.AB∥CD C.∠3=∠4 D.∠A=∠C
6.如图,a∥b,a、b被c所截,得到∠1=∠2的依据是( )
A.两直线平行,同位角相等 B.两直线平行,内错角相等
C.同位角相等,两直线平行 D.内错角相等,两直线平行
(6题) (8题) (9题)
7.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为( )
A.互相垂直 B.互相平行 C.相交 D.无法确定
8.如图,AB∥CD,那么( )
A.∠1=∠4 B.∠1=∠3 C.∠2=∠3 D.∠1=∠5
9.如图,在平行四边形ABCD中,下列各式不一定正确的是( )
A.∠1+∠2=180° B.∠2+∠3=180°
C.∠3+∠4=180° D.∠2+∠4=180°
10.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为( )
A.30° B.60° C.90° D.120°
(10题) ( 11题)
二、填空题
11.如图,由下列条件可判定哪两条直线平行,并说明根据.
(1)∠1=∠2,________________________.(2)∠A=∠3,________________________.(3)∠ABC+∠C=180°,________________________.
12.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.
13.同垂直于一条直线的两条直线________.
14.如图,直线EF分别交AB、CD于G、H.∠1=60°,∠2=120°,那么直线AB与CD的关系是________,理由是:____________________________________________.
(14题) (15题)
15.如图,AB∥EF,BC∥DE,则∠E+∠B的度数为________.
三、解答题
16.已知:如图,∠1=∠2,且BD平分∠ABC.求证:AB∥CD.
17.已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.
18.已知:如图,∠1=∠2,∠3=100°,∠B=80°.求证:EF∥CD.
19.已知:如图,FA⊥AC,EB⊥AC,垂足分别为A、B,且∠BED+∠D=180°.
求证:AF∥CD.
20.如图,已知∠AMB=∠EBF,∠BCN=∠BDE,求证:∠CAF=∠AFD.
21.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角A是120°,第二次拐的角B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,问∠C是多少度?说明你的理由.
23.(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?
(2)在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.
24.如图,在折线ABCDEFG中,已知∠1=∠2=∠3=∠4=?∠5,?延长AB、GF交于点M.试探索∠AMG与∠3的关系,并说明理由.
25.(开放题)已知如图,四边形ABCD中,AB∥CD,BC∥AD,那么∠A与∠C,∠B与∠D的大小关系如何?请说明你的理由.
答案:CBDAB ABDDB
7.(1)AD∥BC内错角相等,两直线平行 (2)AD∥BC同位角相等,两直线平行 (3)AB∥DC同旁内角互补,两直线平行 8.平行 9.平行 10.平行∵∠EHD=180°-∠2=180°-120°=60°,∠1=60°,∴∠1=∠EHD,∴AB∥CD(同位角相等,两直线平行).8.证明:∵∠AMB=∠DMN,又∠ENF=∠AMB,∴∠DMN=∠ENF,
∴BD∥CE.∴∠BDE+∠DEC=180°.
又∠BDE=∠BCN,∴∠BCN+∠CED=180°,
∴BC∥DE,∴∠CAF=∠AFD.
点拨:本题重点是考查两直线平行的判定与性质.21.解:∠C=150°.
理由:如答图,过点B作BE∥AD,则∠ABE=∠A=120°(两直线平行,内错角相等). ∴∠CBE=∠ABC-∠ABE=150°-120°=30°.
∵BE∥AD,CF∥AD,
∴BE∥CF(平行于同一条直线的两直线平行).
∴∠C+∠CBE=180°(两直线平行,同旁内角互补).
∴∠C=180°-∠CBE=180°-30°=150°.
相关热词搜索: 练习题 平行线 判定 答案