中学数学说课稿第1篇一、说教材本节课选自人教版八年级上册第15章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。对它的学习和研下面是小编为大家整理的中学数学说课稿,供大家参考。
一、说教材
本节课选自人教版八年级上册第15章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式的学习提供了方法。因此,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位。
二、说学情
学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;
另外,数学公式中字母具有高度概括性、广泛应用性,鉴于八年级学生的认知水平,理解上有困难。因此,我们把教学难点定为:理解平方差公式的结构特征,灵活应用平方差公式。
三、说教学目标
基于对教材的理解和分析,我在教学中以学生为主体,以学生的`学为根本,我把本课的目标定位为:
知识与技能目标:了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题。
过程与方法目标:经历平方差公式产生的探究过程,培养观察、猜想、归纳、概括、推理的能力和符号感,感受利用转化、数形结合等数学思想方法解决实际问题的策略。
情感态度与价值观目标:通过探究平方差公式,形成学习数学公式的一般套路,体会成功的喜悦,培养团结协助的意识,增强学生学数学、用数学的兴趣。
教学重点:理解平方差公式的意义,掌握平方差公式的结构特征。
教学难点:运用平方差公式解决问题。
四、说教法、学法
课堂是学生学习的主阵地,真正做到把课堂还给学生,因而我采取的的教学模式定为:三先两主动,即让学生先说话、先动手、先总结,让学生主动提问、主动探索。学习方法:学生积极参与、大胆猜想、合作交流和自主探索。
五、说教学过程
(一)创设情景,引入新课
数学课标强调:“数学来源于实际生活”,为了体现这一思想,我设计了一个实际问题。这里只提供情境,刺激学生主动提出问题,因为“提出问题”比“解决问题”更重要。这个以生活实例创设的情境,不仅激发学生的求知兴趣,又为平方差公式的引人服务,更为说明平方差公式的几何意义做好铺垫。
(二)合作交流,探求新知
首先,我用情境中一道题目,并再安排了两个练习,通过对特殊的多项式与多项式相乘的计算,既复习了旧知,又为下面学习平方差公式作了铺垫,让学生感受从一般到特殊的认识规律,引出乘法公式————平方差公式。
接着,教师提问,学生通过自主探究、合作交流,发现规律,式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,并猜想出:这样设计使学生在已掌握的多项乘法法则的基础上,探索具有特殊形式的多项式乘法──平方差公式,自然、合理地探究出新知。
再次,引导学生从“数”的角度验证猜想,对于任意的a、b,由学生运用多项式乘法计算:验证了其公式的正确性。
顺势鼓励学生用自己的语言归纳表述,总结出公式,从而提高学生的语言组织与表达能力。
然后,教师通过分析公式的本质特征使学生掌握公式,在认清公式的结构特征的基础上,进一步剖析a、b的广泛含义,抓住了概念的核心,使学生在公式的运用中能得心应手,起到事半功倍的效果。
最后,用学生最喜欢的拼图游戏,引导学生从“形”的角度认识平方差公式的几何意义,再次验证了猜想。渗透了数形结合的思想,让学生体会到代数与几何的内在联系,引导学生学会从多角度、多方面来思考问题。
(三)巩固深化,内化新知
总结出平方差公式后,我先设计两个简单练习题。通过练习,使学生加深对平方差公式结构特点的认识和理解,进一步掌握平方差公式的本质特征和运用平方差公式必须具备的条件。
然后设计了三个例题。例1和例2是教材上的内容,例3是我设计的一道实际问题。
例1有两道小题,其中设计第(1)题,然后学生完成。第(2)题学生板演,师生共同纠错。
例2有两道小题,先让学生尝试练习,出错后教师及时纠正,使学生认识深刻。第一题体现了转化的思想和数式通性;
另一题是平方差公式与一般多项式乘法的综合,强调不能用公式的仍按多项式乘法法则进行。
例3运用平方差公式解决实际问题,体现了数学来源于生活,服务于生活,学生感受到学习数学的价值,设计此题与平方差公式的几何意义相吻合,加深学生对平方差公式的理解。
(四)反馈练习,巩固新知
练习题的设计有梯度,从基础应用公式入手,到拓展提高,加强基本知识和基本技能训练,使不同水平的学生学习都有收获,体现出“人人学有用的数学”。
在练习的基础上,教师归纳总结,提升学习理念。
(五)总结概括,自我评价
从知识和数学思想两个方面加以小结,使学生对本节课的知识有一个系统全面的认识。
最后,作业分层处理,体现作业的巩固性和发展性原则,尊重学生的个体差异,满足多样化的学习需要,让不同的人在数学上得到不同的发展。
一、说教材
本节课选自人教版八年级上册第15章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全闲方公式的学习提供了方法。因此,闲方差公式作为初中阶段的第一个公式,在教学中具有很重要地位。
二、说学情
学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性,鉴于八年级学生的认知水平,理解上有困难。因此,我们把教学难点定为:理解闲方差公式的结构特征,灵活应用闲方差公式。
三、说教学目标
基于对教材的理解和分析,我在教学中以学生为主体,以学生的学为根本,我把本课的目标定位为:
知识与技能目标:了解闲方差公式产生的背景,理解闲方差公式的意义,掌握闲方差公式的结构特征,并能灵活运用闲方差公式解决问题。
过程与方法目标:经历闲方差公式产生的探究过程,培养观察、猜想、归纳、概括、推理的能力和符号感,感受利用转化、数形结合等数学思想方法解决实际问题的策略。
情感态度与价值观目标:通过探究闲方差公式,形成学习数学公式的一般套路,体会成功的喜悦,培养团结协助的意识,增强学生学数学、用数学的兴趣。
教学重点:理解闲方差公式的意义,掌握闲方差公式的结构特征。
教学难点:运用闲方差公式解决问题。
四、说教法、学法
课堂是学生学习的主阵地,真正做到把课堂还给学生,因而我采取的的教学模式定为:三先两主动,即让学生先说话、先动手、先总结,让学生主动提问、主动探索。学习方法:学生积极参与、大胆猜想、合作交流和自主探索。
五、说教学过程
本节课教学按以下五个流程展开
五个流程:
创设情景
引入新课
合作交流探求新知
巩固深化内化新知
总结概括
布置作业:
(一)创设情景,引入新课
数学课标强调:“数学来源于实际生活”,为了体现这一思想,我设计了一个实际问题。这里只提供情境,刺激学生主动提出问题,因为“提出问题”比“解决问题” 更重要。这个以生活实例创设的情境,不仅激发学生的求知兴趣,又为闲方差公式的引人服务,更为说明闲方差公式的几何意义做好铺垫。
(二)合作交流,探求新知
首先,我用情境中一道题目,并再安排了两个练习,通过对特殊的多项式与多项式相乘的计算,既复习了旧知,又为下面学习闲方差公式作了铺垫,让学生感受从一般到特殊的认识规律,引出乘法公式----闲方差公式。
接着,教师提问,学生通过自主探究、合作交流,发现规律,式子左边是两个数的和与这两个数的差的积,右边是这两个数的闲方差,并猜想出:这样设计使学生在已掌握的多项乘法法则的基础上,探索具有特殊形式的多项式乘法──闲方差公式,自然、合理地探究出新知。
再次,引导学生从“数”的角度验证猜想,对于任意的a、b,由学生运用多项式乘法计算:验证了其公式的正确性。
顺势鼓励学生用自己的语言归纳表述,总结出公式,从而提高学生的语言组织与表达能力。
然后,教师通过分析公式的本质特征使学生掌握公式,在认清公式的结构特征的基础上,进一步剖析a、b的广泛含义,抓住了概念的核心,使学生在公式的运用中能得心应手,起到事半功倍的效果。
最后,用学生最喜欢的拼图游戏,引导学生从“形”的角度认识闲方差公式的几何意义,再次验证了猜想.渗透了数形结合的思想,让学生体会到代数与几何的内在联系,引导学生学会从多角度、多方面来思考问题。
(三)巩固深化,内化新知
总结出闲方差公式后,我先设计两个简单练习题。通过练习,使学生加深对闲方差公式结构特点的认识和理解,进一步掌握闲方差公式的本质特征和运用闲方差公式必须具备的条件。
然后设计了三个例题。例1和例2是教材上的内容,例3是我设计的一道实际问题。
例1有两道小题,其中设计第(1)题,然后学生完成。第(2)题学生板演,师生共同纠错。
例2有两道小题,先让学生尝试练习,出错后教师及时纠正,使学生认识深刻。第一题体现了转化的思想和数式通性;另一题是闲方差公式与一般多项式乘法的综合,强调不能用公式的仍按多项式乘法法则进行。
例3运用闲方差公式解决实际问题,体现了数学来源于生活,服务于生活,学生感受到学习数学的价值,设计此题与闲方差公式的几何意义相吻合,加深学生对闲方差公式的理解。
(四)反馈练习,巩固新知
练习题的设计有梯度,从基础应用公式入手,到拓展提高,加强基本知识和基本技能训练,使不同水平的学生学习都有收获,体现出“人人学有用的数学”。
在练习的基础上,教师归纳总结,提升学习理念。
(五)总结概括,自我评价
从知识和数学思想两个方面加以小结,使学生对本节课的知识有一个系统全面的认识。
最后,作业分层处理,体现作业的巩固性和发展性原则,尊重学生的个体差异,满足多样化的学习需要,让不同的人在数学上得到不同的发展。
一、说教材:
本节授课内容为等比数列的定义及其通项公式的推导。
1、教材的地位和作用:
等比数列是数列的重要组成部分,掌握了它及其通项公式,有利于进一步研究等比数列的性质及前n项和的推导以及应用,从而极大提高学生利用数列知识解决实际问题的能力。同时,这节课的内容和教学过程对进一步培养学生观察、分析和归纳问题的能力具有重要的意义。
2、教材的处理:
结合教参与学生的学习能力,我将《等比数列及其通项公式》安排了2节课时。本节课是第一课时。根据目前高一学生的状况,发现虽然这节课的内容比较简单,但由于老师的讲解过多,导致学生丢失了很多重要的知识。为了激发学生的学习热情,实施趣味教学,我利用一个初中自然学科中的“细胞分裂”的问题以及课本第109页的一个典故引出等比数列的定义及其通项公式。之后,再由浅入深,由低到高地设置了三个层次的问题,逐步加深学生对等比数列及其通项公式的记忆和理解。由此,我对教材的引入、例题、练习做了适当的补充和修改。
3、教学重点与难点及解决办法:
根据学生现状、教学要求及教材内容,确立本节课的教学重点为:等比数列的定义及通项公式。解决的办法是:归纳类比。
根据学生的实际情况——运用所学的知识分析、解决问题的能力较差,我把这节课的难点定为:等比数列的定义及通项公式的深刻理解。要突破这个难点,关键在于紧扣定义,类比等差数列的相关知识,来发现解决问题的方法。
二、说教学目标:
根据教学要求,教材的地位和作用,以及学生现有的知识水平和数学能力,我把本节课的教学目的定为如下四个方面:
(一)知识教学目标:使学生掌握等比数列的定义及通项公式,发现等比数列的性质,并能运用定义及其通项公式解决一些实际问题。
(二)能力训练目标:培养运用归纳类比的方法去发现并解决问题的能力及运用方程的思想的计算能力。
(三)德育渗透目标:培养积极动脑,明辨是非的学习作风,掌握取其精华、去其糟粕的能力及互助的精神。
(四)美育渗透目标:等比、等差的相似美及结构美。
三、说教法与学法:
现代教学论指出:“教学是师生的多边活动,在教师的‘反馈——控制’的同时,每个学生也都在进行着微观的‘反馈——控制’。”由于任何教学都必须通过学生自身的学习建构活动才有成效,故本节课采用“发现式教学法、类比分析法”来组织课堂教学。全班同学分成十二组,每组4—5人,按异质分组,每组都有上、中、下三种程度不同的学生,进行分组讨论。这样,可充分调动学生的学习积极性和能动性,突出学生的主体作用,并培养学生互助合作的精神。这堂课用类比的方法学习等比数列是一种较好的学法。因此,在教学过程中应着重提醒学生重视等比与等差数列的对比。
四、说教学手段:
计算机课件辅助教学。
五、说教学过程和时间安排:
1、复习提问:(2分钟)
(1)等差数列的定义是什么?
(2)等差数列的通项公式怎样?
目的:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点。
2、导入新课:(12分钟)
在教学过程中,提出两个问题:问1、细胞分裂:一个细胞,每隔一分钟后一分为二,第8分钟后有几个细胞?问2、课本第109页的典故由同学阅读。引导学生通过“观察、分析、归纳”得出等比数列的定义及其通项公式。教师用计算机课件演示其填充过程,并给出等比数列的定义及其通项公式。
目的:由特殊到一般,由具体到抽象,由低级到高级的认识顺序引出定义,这很自然,学生比较容易接受,同时,通过趣味性的问题,来提高学生的学习兴趣,激发学生发现等比数列的定义及其通项公式的强烈欲望。
3、创设问题(28分钟)
第一层次:(6分钟)
判断下列数列哪些是等比数列,如果不是,请说明为什么?
目的:充分调动学生学习的主动性及学习热情,活跃课堂气氛,同时培养学生的口头表达能力和临场应变能力。
第二层次:(6分钟)
例1已知等比数列的首项是—5,公比是—2,问这个数列的第几项的值为—80?
目的:使学生进一步理解通项公式中每一个字母所代表的数学含义及它们之间的相互关系,同时培养学生的逆性思维能力,解决学生定性思维顽疾。
第三层次:(16分钟)
一个等比数列的第3项为9,第5项为81,求它的首项和公比?
目的:让学生深刻理解等比数列定义其通项公式,并在应用过程中发现公比的取值情况。
一个等比数列的第2项是10,第3项是20,求它首项和第4项?
目的:总领以上三层次全部知识,并使集体智慧个人化,书本知识灵活化:同时培养学生独立思考的能力。
4、小结:(2分钟)教师引导,学生总结
为了让学生将获得的知识进一步条理化、系统化,同时培养学生的归纳总结能力及练习后进行再认识的能力,教师引导学生对本节课进行总结:
1)等比数列定义是什么?怎样判断一个数列是否是等比数列?
2)等比数列通项公式怎样?其中每个字母所代表的含义是什么?
3)等比数列应注意哪些问题?(an≠0、q≠0)
一、说目标
1、使孩子理解和掌握闲方差公式,并会用公式进行计算;
2、注意培养孩子分析、综合和抽象、概括以及运算能力。
二、说重难点
本节教学的重点是掌握公式的结构特征及正确运用公式、难点是公式推导的理解及字母的广泛含义、闲方差公式是进一步学习完全闲方公式、进行相关代数运算与变形的重要知识基础、
1、闲方差公式是由多项式乘法直接计算得出的:与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项、合并同类项后仅得两项。
2、这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;
右边是乘式中两项的闲方差,即相同项的闲方与相反项的闲方差、公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式。
只要符合公式的结构特征,就可运用这一公式、例如在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了。
3、关于闲方差公式的特征,在学习时应注意:
(1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数。
(2)右边是乘式中两项的闲方差(相同项的闲方减去相反项的闲方)。
(3)公式中的和可以是具体数,也可以是单项式或多项式。
(4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算。
三、说教法
1、可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发孩子的学习兴趣,使孩子能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养孩子观察、概括的能力。
2、通过孩子自己的`试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的闲方差,而另两项恰是互为相反数,合并同类项时为零,即(a+b)(a—b)=a2+ab—ab—b2=a2—b2
这样得出闲方差公式,并且把这类乘法的实质讲清楚了。
3、通过例题、练习与小结,教会孩子如何正确应用闲方差公式、这里特别要求孩子注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1—2x),(1+2x)(1—2x)=12—(2x)2=1—4x2——(a+b)(a—b)=a2—b2。
这样,孩子就能正确应用公式进行计算,不容易出差错。
另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养孩子解题的灵活性。
四、说学法
一师生共同研究闲方差公式
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。
让孩子动脑、动笔进行探讨,并发表自己的见解、教师根据孩子的回答,引导孩子进一步思考:
两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式、这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了、而它们的积等于乘式中这两个数的闲方差)
继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算、以后经常遇到(a+b)(a—b)这种乘法,所以把(a+b)(a—b)=a2—b2作为公式,叫做乘法的闲方差公式。
在此基础上,让孩子用语言叙述公式。
二运用举例变式练习
例1计算(1+2x)(1—2x)
解:(1+2x)(1—2x)
=12—(2x)2
=1—4x2
教师引导孩子分析题目条件是否符合闲方差公式特征,并让孩子说出本题中a,b分别表示什么。
例2计算(b2+2a3)(2a3—b2)
解:(b2+2a3)(2a3—b2)
=(2a3+b2)(2a3—b2)
=(2a3)2—(b2)2
=4a6—b4
教师引导孩子发现,只需将(b2+2a3)中的两项交换位置,就可用闲方差公式进行计算。
课堂练习
运用闲方差公式计算:
(1)(x+a)(x—a);
(2)(m+n)(m—n);
(3)(a+3b)(a—3b);
(4)(1—5y)(1+5y)、
例3计算(—4a—1)(—4a+1)
让孩子在练习本上计算,教师巡视孩子解题情况,让采用不同解法的两个孩子进行板演。
解法1:(—4a—1)(—4a+1)
=[—(4a+1)][—(4a—1)]
=(4a+1)(4a—1)
=(4a)2—12
=16a2—1
解法2:(—4a—1)(—4a+1)
=(—4a)2—1
=16a2—1
根据孩子板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用闲方差公式,写出结果、解法2把—4a看成一个数,把1看成另一个数,直接写出(—4a)2—12后得出结果、采用解法2的同学比较注意闲方差公式的特征,能看到问题的本质,运算简捷、因此,我们在计算中,先要分析题目的数字特征,然后正确应用闲方差公式,就能比较简捷地得到答案、
课堂练习
1、口答下列各题:
(1)(—a+b)(a+b);
(2)(a—b)(b+a);
(3)(—a—b)(—a+b);
(4)(a—b)(—a—b)。
2、计算下列各题:
(1)(4x—5y)(4x+5y);
(2)(—2x2+5)(—2x2—5);
教师巡视孩子练习情况,请不同解法的孩子,或发生错误的孩子板演,教师和孩子一起分析解法。
三小结
1、什么是闲方差公式?
2、运用公式要注意什么?
(1)要符合公式特征才能运用闲方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。
四作业
1、运用闲方差公式计算:
(1)(x+2y)(x—2y);
(2)(2a—3b)(3b+2a);
(3)(—1+3x)(—1—3x);
(4)(—2b—5)(2b—5);
(5)(2x3+15)(2x3—15);
(6)(0.3x—0.1)(0.3x+1)。
2、计算:
(1)(x+y)(x—y)+(2x+y)(2x+y);
(2)(2a—b)(2a+b)—(2b—3a)(3a+2b);
(3)x(x—3)—(x+7)(x—7);
(4)(2x—5)(x—2)+(3x—4)(3x+4)。
一、教材说明
本节课是人教版高中数学必修I第一章《集合与函数概念》1。2。2函数的表示方法,该课时主要学习函数的三种表示方法:解析法,图像法,列表法,以及应用函数的表示方法解决一些实际问题
1、教材所处低位和作用
学习函数的表示,不仅是研究函数本身和应用函数解决实际问题所涉及的问题,而且是加深理解函数的概念的过程。特别是在信息技术的环境下面可以使函数在数与形两方面的方式表示,因而使得学习函数的表示也是向学生渗透数形结合方法的重要过程。
2、学情分析
学生的年龄特点和认知特点。
学生已具备的基本知识与技能。
二、说教学目标
知识与技能
1、进一步理解函数概念,使学生掌握函数的三种表示法:解析法,列表法,图像法。
2、能够恰当运用函数的三种表示方法,并借此解决一些实际问题:初步培养学生实际问题转化为数学问题的能力。
过程与方法
1、通过三种方法的学习,渗透数形结合的思想。
2、在运用函数解决实际问题的过程中,培养学生分析问题的能力增强学生运用数学的意识。
情感态度与价值:让学生体会数学在实际问题中的应用,培养学生学习兴趣。
三、说教学重点,难点
重点:函数的三种表示方法(因为学习本节课的目的就是为了掌握函数的三种不同表示方法)
难点:根据不同的实际需要选择恰当的方法表示函数(因为恰当比较难把握)
四、说教法分析与学法指导
本着以“学生发展为本”。引导学生主动参与学习,指导学生学会学习方法,培养学生积极探索的精神,学生为主,教师指导。整个教学过程主要用启发式教学方法,体现“分析”——“研究”——“总结”的学习环节,并以多媒体为教辅手段。通过创设问题情境,营造学习氛围,组织学生讨论,让学生尝试探索中不断发现问题,以激发学生的求知欲,并在寻求解决问题的方法尝试的过程中获得自信心和成功感,在完成知识目标的同时,也完成情感目标的教育
五、说教学过程
教学环节教学环节与教学内容设计意图
引入定义表示法,这节课将更深入的了解、探讨这三种表示方法,先回顾函数解析法,图像法,列表法的定义;
并给出一些众所周知的例子。例如,解析法:一次函数y=kx+b,二次函数y=ax2+bx+c等,图像法:我国人口出生率变化曲线等;
列表法:国内生产总值表格等体会函数就在我们身边,这样的过程激发了学生的学习热情,培养了他们的学习兴趣,丰富了血生学习方式
问题情境例1。某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元。试用三种表示方法表示函数y=f(x)。
从简单的例题入手,初步了解函数的三种表示方法。重点是让学生明白:确定函数定义域是非常重要的;
函数的图像并不是只能为连续的曲线,也可以是直线,折线和孤立的点组成,这里的函数图像则由一些孤立的点组成,从而加强学生对函数图像的认识
问题情境例2下表是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表。请你对这三位同学高一年度的数学情况作一个分析。
让学生学会选择性的用函数的三种表示方法;
先让学生分别用三种函数表示方法试试看,即可见这题最好是通过图像进行分析;
通过不同的分析法,更能突出“形”的优势,并让学生明白并不数所有的函数都能解析法表示。
问题讨论观察前面两个例子,说一说三种表示法各自的优点?通过实例展示,对学生来说理解函数的三种表示方法是比较轻松的,但对于三种表示法的优点,学生未必能够准确的描述,通过学生讨论与教师的评价过程,能够培养学生用数学语言叙述问题和归纳总结的能力,同时考察同学的自学能力。
课堂小结我们这节课的主要内容是什么?
其中三种函数表示方法各自的优点回顾整理这节课所学知识,能够是知识更加的料理分明,便于记忆。
学生经过以上几个环节的学习,已经初步掌握了函数的三种表示法,有待进一步提高认知水平,因此针对学生素质的差异,设计了有层次的作业,留给课后自主探究,这样即使学生掌握了基础知识,又有余力的学生有发挥空间,从而达到拔尖和减负的目的。
六、说教学设计说明
本节课实际遵循新课标过程的基本理念:发展学生的教学应用知识,体现数学的文化价值;
注意信息技术与数学课程的整合,是学生学习过程中体会用数学的思考方法去解决问题。:以上,我仅从说教材,说学情,说教法,说学法,说教学过程上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。希望各位专家领导对本堂说课提出宝贵意见。
下一篇:世界遗产导游词字热门20篇