总结年级下册数学知识点第1篇第一单元位置与方向1、①(东与西)相对,(南与北)相对,(东南—西北)相对,(西南—东北)相对。②清楚以谁为标准来判断位置。③理解位置是相对的,不是绝对的。2、地图通常是按下面是小编为大家整理的总结年级下册数学知识点20篇,供大家参考。
第一单元 位置与方向
1、① (东与西)相对,(南与北)相对,(东南—西北)相对,(西南—东北)相对。② 清楚以谁为标准来判断位置。③ 理解位置是相对的,不是绝对的。
2、地图通常是按(上北、下南、左西、右东)来绘制的。( 做题时先标出北南西东。)
3、会看简单的路线图,会描述行走路线。一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。同一个地点有不同的行走路线。一般找比较近的路线走。
4、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。
5、生活中的方位知识:① 北极星永远在北方。② 影子与太阳的方向相对。③ 早上太阳在东方,中午在南方,傍晚在西方。④ 风向与物体倾斜的方向相反。
第二单元 除数是一位数的除法
1、口算时要注意:(1)0除以任何数(0除外)都等于0;(2)0乘以任何数都得0;(3)0加任何数都得任何数本身;(4)任何数减0都得任何数本身 。
2、没有余数的除法:
被除数÷除数=商,商×除数=被除数,被除数÷商=除数
有余数的除法:被除数÷除数=商……余数,商×除数+余数=被除数,(被除数—余数)÷商=除数
3、笔算除法顺序:确定商的位数,试商,检查,验算。
4、基本规律:(1)从高位除起,除到哪一位,就把商写在那一位;(2)三位数除以一位数时百位上够除,商就是三位数;百位上不够除,商就是两位数;(最高位不够除,就看两位上商。)(3)哪一位有余数,就和后面一位上的数合起来再除;(4)哪一位上不够商1,就添0占位;每一次除得的余数一定要比除数小。
5、课外知识拓展:2、3、5倍数的特点2的倍数:个位上是2、4、6、8、0的数是2的倍数。5的倍数:个位上是0或5的数是5的倍数。3的倍数:各个数位上的数字加起来的和是3的倍数,这个数就是3的倍数。
6、关于倍数问题:两数和÷倍数和=1倍的数,两数差÷倍数差=1倍的数
7、和差问题(两数和-两数差)÷2=较小的.数,(两数和 + 两数差)÷2=较大的数
第三单元 复式统计表
1、把两个或两个以上有联系的单式统计表合编成一个统计表,这个统计表就是复式统计表。
2、观察、分析复式统计表要先看表头,弄清每一项的内容,再根据数据进行分析,回答问题。
第四单元 两位数乘以两位数
口算乘法
1、两位数乘一位数的口算方法:(1)把两位数分成整十数和一位数,用整十数和一位数分别与一位数相乘,最后把两次乘得的积相加(2)在脑中列竖式计算。
2、整百整十数乘一位数的口算方法:(1)先用整百数乘一位数,再用整十数乘一位数,最后把两次乘得的积相加。(2)先用整百整十数的前两位与一位数相乘,再在乘积的末尾添上一个0。(3)在脑中列竖式计算。
3、一个数与10相乘的口算方法:一位数与10相乘,就是把这个数的末尾添上一个0。
4、两位数乘整十数的口算方法:先用这个两位数与整十数十位上的数相乘,然后在积的末尾添上一个O。
笔算乘法
1、先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。
2、凡是问“够不够,能不能”等的题,都要三大步:①计算、②比较、③答题。→ 别忘了比较这一步。
3、相关公式:因数×因数 = 积,积÷因数 = 另一个因数。
4、两位数乘两位数积可能是( 三 )位数,也可能是( 四 )位数。
第五单元 面积
面积和面积单位:
1、常用的面积单位有:(平方厘米)、(平方分米)、(平方米)。
2、理解面积的意义和面积单位的意义。
面积:物体表面或封闭图形的大小,叫做它们的面积。边长是1米的正方形,它的面积是1平方米。边长是1分米的正方形,它的面积是1平方分米。边长是1厘米的正方形,它的面积是1平方厘米。
3、区分长度单位和面积单位的不同。长度单位测量线段的长短,面积单位测量面的大小。
4、正确理解并熟记相邻的面积单位之间的进率。① 进率100:1平方米 = 100平方分米,1平方分米 = 100平方厘米② 相邻两个常用的长度单位之间的进率是( 10 )。相邻两个常用的面积单位之间的进率是( 100 )。
背熟公式1、周长公式:长方形的周长 = (长+宽)× 2,长 = 周长÷2-宽,或者:(周长-长×2)÷2= 宽,宽 = 周长÷2-长,或者:(周长-宽×2)÷2=长 ;正方形的周长 = 边长×4,正方形的边长 = 周长÷4
5、面积公式:长方形面积=长×宽,正方形的面积=边长×边长,长方形周长=(长+宽)×2,正方形周长=边长×4,已知面积求长:长=面积÷宽,已知面积求边长:边长=面积开平方,已知周长求长:长=周长÷2 - 宽。
第六单元 年、月、日
年、月、日
1、常用的时间单位有:(年、月、日)和(时、分、秒)。
2、熟记每个月的天数:知道大月一个月有31天,小月一个月有30天。平年二月28天,闰年二月29天,二月既不是大月也不是小月。一年有12个月(7大4小1特殊)
3、熟记全年天数:平年2月28天,闰年2月29天。平年365天,闰年366天。上半年多少天(平年181天,闰年182天),下半年多少天(所有年份都是184天)。
4、经过的天数的计算:公式:结束时间—开始时间 + 1
5、给出一个人出生的年份,会计算这个人多少周岁;给出一个人的年龄会计算他是哪一年出生的。
6、通常每4年里有( 1 )个闰年, ( 3 )个平年。
24计时法
1、普通计时法又叫12时计时法,就是把一天分成两个12时表示,普通计时法一定要加上“上午”、“下午”等前缀。(如凌晨3时、早上8时、上午10时、下午2时、晚上8时)
2、24时计时法:就是把一天分成24时表示,不加前缀
3、普通计时法转换成24时计时法时,超过下午1时的时刻用24时计时法表示就是把原来的时刻加上12,去掉前缀。
4、反过来要把24时计时法表示的时刻表示成普通计时法的时刻,超过13时的时刻就减12,并加上下午,晚上等字在时刻前面。
5、计算经过时间,就是用结束时刻减开始时刻。结束时刻-开始时刻=时间段(经过时间)★(计算经过时间时,一定把不同的计时法变成相同的计时法再计算)
6、认识时间与时刻的区别:(时间是一段,时刻是一个点)
7、时间单位进率:1世纪=100年,1年 =12个月,1天(日)=24小时,1小时=60分钟,1分钟=60秒钟,1周=7天
第七单元 小数的初步认识
1、小数的意义:像,,,,和这样的数叫做小数。小数是分数的另一种表现形式。
2、小数的认、读、写:限于小数部分不超过两位的小数。整数部分按整数的读法(几百几十几)。小数部分每一位都要读,按读电话号码的方法读,有几个0就读几个零。
3、小数与分数的关系、互换。小数不同表示的分数就不同。
4、把“单位1”平均分成10份,每份是它的十分之一,也就是,把“单位1”平均分成100份,每份是它的百分之一,也就是。
5、分母是10的分数写成一位小数(),分母是100的分数写成两位小数()。
6、比较两个小数的大小:先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后最高位比起。
7、比大小的两种情况:跑步是数越少越好;跳远、跳高是数越大越好。
8、计算小数加、减法时,小数点对齐,也就是相同数位对齐,再相加、减。
9、小数不一定比整数小。(如:
>5 ; > 1等)
第八单元 数学广角-搭配(二)
简单的排列:有序排列才能做到不重复、不遗漏。
简单的组合:组合问题可以用连线的方法来解决。
组合与排列的区别:排列与事物的顺序有关,而组合与事物的顺序无关。
有一个公共的`顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。两条直线相交有4对邻补角。
有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。
5.1.2
两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
注意:⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。
⑶垂直是相交的特殊情况。
⑷垂直的记法:a⊥b,AB⊥CD。
画已知直线的垂线有无数条。
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。在同一平面内两条直线的关系只有两种:相交或平行。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
5.2.2直线平行的条件
两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。
两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。
判定两条直线平行的方法:
方法1两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
方法2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
方法3两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
5.3平行线的性质
平行线具有性质:
性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。
判断一件事情的语句叫做命题。
5.4平移
⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各
组对应点的线段平行且相等。
图形的这种移动,叫做平移变换,简称平移。
第六章《平面直角坐标系》
6.1平面直角坐标系
6.1.1有序数对
有顺序的两个数a与b组成的数对,叫做有序数对。
6.1.2平面直角坐标系
平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
平面上的任意一点都可以用一个有序数对来表示。
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
6.2坐标方法的简单应用
6.2.1用坐标表示地理位置
利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向; ⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; ⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
6.2.2用坐标表示平移
在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。
第七章《三角形》
7.1与三角形有关的线段7.1.1三角形的边
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。
顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。三角形两边的和大于第三边。
7.1.2三角形的高、中线和角平分线
7.1.3三角形的稳定性
三角形具有稳定性。
7.2与三角形有关的角
7.2.1三角形的内角
三角形的内角和等于180。
7.2.2三角形的外角
三角形的一边与另一边的延长线组成的角,叫做三角形的外角。三角形的一个外角等于与它不相邻的两个内角的和。三角形的一个外角大于与它不相邻的任何一个内角。
7.3多边形及其内角和
7.3.1多边形
在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
n边形的对角线公式:
各个角都相等,各条边都相等的多边形叫做正多边形。
多边形的内角和n边形的内角和公式:180(n-2)
多边形的外角和等于360。
1三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。
☆2判断三条线段能否组成三角形。
①a+b>c(a b为最短的两条线段)②a-b
☆3第三边取值范围:a-b < c若两边分别为a,b则周长的取值范围是2a
如两边分别为5和7则周长的取值范围是14
☆5三角形的角平分线、高、中线都有三条,都是线段。其中角平分线、中线都交于一点且交点在三角形内部,高所在直线交于一点。
6“三线”特征:
☆三角形的中线
①平分底边。
②分得两三角形面积相等并等于原三角形面积的一半。
③分得两三角形的周长差等于邻边差。
☆7直角三角形:
①两锐角互余。
② 30度所对的直角边是斜边的一半。
③三条高交于三角形的一个顶点。
④ ∠A=1/2∠B=1/3∠C
⑤ ∠A: ∠B: ∠C=1:2:3
⑥ ∠A=∠B+∠C ⑦ ∠A: ∠B: ∠C=1:1:2 ⑧ ∠A=90-∠B
☆8相关命题:
→1三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
→2锐角三角形中的锐角的取值范围是60≤X<90 。锐角不小于60度。
→3任意一个三角形两角平分线的夹角=90+第三角的一半。
→4钝角三角形有两条高在外部。
→5全等图形的大小(面积、周长)、形状都相同。
→6面积相等的两个三角形不一定是全等图形。
→7能够完全重合的两个图形是全等图形。
→8三角形具有稳定性。
9三条边分别对应相等的两个三角形全等。
10三个角对应相等的两个三角形不一定全等。
11两个等边三角形不一定全等。
12两角及一边对应相等的两个三角形全等。
13两边及一角对应相等的两个三角形不一定全等。
14两边及它们的夹角对应相等的两个三角形全等。
15两条直角边对应相等的两个直角三角形全等。
16一条斜边和一直角边对应相等的两个三角形全等。
17一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。
18一角和一边对应相等的两个直角三角形不一定全等。
19有一个角是60的等腰三角形是等边三角形。
长方形与正方形
知识点:
1、掌握长方形正方形的特征:长方形和正方形都有4条边,4个直角,长方形对边相等,正方形四条边都相等。
2、初步了解长方形、正方形之间的联系:正方形是特殊的长方形。
3、能在方格纸上画出长方形与正方形。
平行四边形
知识点:
1、直观认识平行四边形,知道平行四边形有四条边、四个角,对边相等。
2、初步了解长方形是特殊的平行四边形。
一、主题图引入。
1、同学们,你们喜欢参加体育活动吗?你喜欢什么运动?(对学生进行热爱运动、积极参加体育锻炼的思想教育。)
2、这是什么地方?你看到了什么?(给充分的时间让学生同桌说或小组说。)
3、仔细观察,你会发现许多图形。
学生汇报、交流。
4、揭示课题。
今天我们就来学习有关“四边形”的知识。——板书课题。
(一)年、月、日部分
1、一年有12个月;一年有4个季度(1、2、3月为第1季度;4、5、6月为第2季度,;7、8、9月为第3季度;10、11、12月为第4季度)。
2、记大小月的方法:1、3、5、7、8、10、腊,31天永不差;4、6、9、冬,30整,只有2月二七九。7个大月,4个小月,二月平年28天,闰年29天。
3、平年全年有365天,平年2月是28天,平年的上半年有181天,下半年有184天。平年全年有52个星期零1天。
4、闰年全年有366天,闰年2月是29天,闰年的上半年有182天,下半年有184天。闰年全年有52个星期零2天。
5、公历年份是4的倍数的一般都是闰年;但公历年份是整百数的,必须是400的倍数才是闰年。如:1900、2100等不是闰年,而1600、2000、2400等是闰年。
6、连续两个月共62天的是:7月和8月,12月和第二年的1月;
一年中连续两个月共62天的是:7月和8月。
7、一个人今年20岁,但只过了5个生日,他是2月29日出生的。
8、计算周年的方法是用现在的年份减去原来的年份得的数就是周年。如:到2008年10月1日,是中国成立(59)周年。用2008-1949=59周年
(二)24时计时法部分
1、年月日、时分秒都是时间单位。
2、在一日里,钟表上时针正好走两圈,共24小时。所以,经常采用从0时到24时的计时法,通常叫做24时计时法。
3、1日(天)=24小时;1小时=60分;1分=60秒
4、求经过的时间。如:一辆汽车上午8:20出发,到下午5:50到达终点,一共行使多长时间。第一步要先进行换算:把下午5:50变成24时计时法的形式5:50+12=17:50,第二步用17时50分-8时20分=9时30分,就求出了经过的时间。
5、认识时间与时刻的区别。
如:火车11:00出发,21:30到达,火车运行时间是10小时30分,注意不要写成10:30。正确的列式格式为:21时30分-11时=10时30分,不能用电子表的形式相减。
再如:火车19时出发,第二天8时到达,火车运行时间是13小时。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时)。
又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。
6、经过的天数的计算:
公式:结束时间—开始时间+1=经过的天数
例如:6月12到6月30日是多少天?(30-12+1=19天)
数学学习方法
主动预习
新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。
如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。
抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
思考是数学学习方法的核心
一些孩子对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题。
如有这样一道题让学生解“把一个长方体的高去掉2厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”
孩子对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师家长的引导下逐渐掌握解题时的思考方法。
数学求倒数地方法
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
第一单元:长度单位
1、第1---3页
(1)经历用不同工具测量同一物体长度的过程,体会统一长
度单位的必要性。
(2)能用给定的"工具"进行估计和测量。
(3)认识厘米,体会厘米的实际意义。
(4)能用厘米估计较小物体的长度,会用刻度尺测量较小物
体的长度。
2、第4---5页
(1)认识米,体会米的实际意义,能用米估计较长物体的长
度。
(2)掌握米和厘米之间的关系,能恰当选择单位表示物体的
长度。
(3)认识米尺,会用米尺测量物体的长度。
(4)初步认识线段,能辨别,能测量线段的长度,能画定长
的线段
第二单元:100以内的加法和减法(二)
1、不进位加法
(1)在具体情境中,进一步体会加法的意义。
(2)探索并掌握两位数加两位数(不进位)的计算方法。
(3)让学生感受加法计算和日常生活的联系,进一步提高解决问题的能力。
2、进位加法
(1)在具体情境中,进一步体会加法的意义。
(2)探索并掌握两位数加两位数进位加的计算方法,能正确进行计算。
(3)能用两位数的加法解决简单的实际问题,进一步提高解决问题的能力。
3、不退位减法
(1)在具体情境中,进一步体会减法的意义。
(2)探索并掌握两位数减两位数(不退位)的计算方法。
(3)进一步培养提出问题、解决问题的意识和能力。
4、退位减法
(1)在具体情境中,进一步体会减法的意义。
(2)探索并掌握两位数减两位数退位减的计算方法,能正确进行计算。
(3)能用两位数的减法解决简单的实际问题,进一步提高解决问题的能力。
本单元与第二单元考察内容大同小异。
第五单元混合运算
一、混合计算
混合运算,先乘除,后加减,有括号的要先算括号里面的。
只有加、减法或只有乘、除法,都要从左到右按顺序计算。
二、解决两步计算的实际问题
1、想好先解决什么问题,再解决什么问题。
2、可以画图帮助分析。
3、可以分步计算,也可以列综合算式。
4、带小括号运算的类型:
方法:算式里有括号的,要先算括号里面的。
5.把两个算式合并成一个综合算式。(重点)。
弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。
当需要替换的是第二个数,必要时还需要加上小括号。
第六单元有余数的除法
有余数的除法
1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。
2、余数与除数的关系:在有余数的除法中,余数必须比除数小。
最大的余数小于除数1,最小的余数是1。
3、笔算除法的计算方法:
(1)先写除号“厂”
(2)被除数写在除号里,除数写在除号的左侧。
(3)试商,商写在被除数上面,并要对着被除数的个位。
(4)把商与除数的乘积写在被除数的下面,相同数位要对齐。
(5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。
4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
(1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。
(2)乘:把除数和商相乘,将得数写在被除数下面。
(3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。
(4)比:将余数与除数比一比,余数必须必除数小。
5、解决问题
根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。
(1)余数比除数小。
(2)至少问题(进一法):商+1
22个学生去划船,每条船最多坐4人,他们至少要租多少条船?
22÷4=5(条)……2(人)
答:他们至少要租6条船。
(3)最多问题(去尾法)
茵苗有10元,每个面包3元,茵苗最多能买几个?
本单元有一道难题,就是已知几月几日是星期几,要求几月几日是星期几。这一部分难度比较大,家长们可以先自行观看教学视频,自己先弄明白了,再给孩子讲解。
第七单元万以内数的认识
一、1000以内数的认识
1、10个一百就是一千。
2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。
3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。
4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。
5、认识算盘,一颗上珠是5,一颗下珠是1。
二、10000以内数的认识
1、10个一千是一万。
2、万以内数的读法和写法与1000以内的数读法和写法相同。
3、最小两位数是10,最大的两位数是99;
最小三位数是100,最大的三位数是999;
最小四位数是1000,最大的四位数是9999;
最小的五位数是10000,最大的五位数是99999。
三、整百、整千数加减法
1、整百、整千加减法的计算方法。
(1)把整百、整千数看成几个百,几个千,然后相加减。
(2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。
2、估算
把数看做它的"近似数再计算。
四、10000以内数的大小比较的方法:
(1)位数多的数就大,例如999<1000
(2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;
(3)如果最高位上的数字相同,就比较下一位上的数,依次类推。
第八单元克、千克
1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。
2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。
3、一个两分的硬币约是1克。两袋500克的盐约是1千克。
4、1千克=1000克1kg=1000g.进率是1000。
5、计算或者比较大小时,如果单位不同,就需要把单位统一,一般统一成单位“克”。
估计物品有多重,要结合物品的大小、质地等因素。
物品的重量和物品的材质没有关系:1千克的棉花和1千克的铁一样重。
第九单元数学广角-推理
1、有语文、数学和品德与生活三本书,小红、小丽和小刚各拿一本。
推理时,先根据条件确定必然情况,再用排除法确定其他情况。
2、填数游戏和扫雷游戏
当然,这么多的内容,当然不是让孩子一下子就记住。寒假期间,孩子要先把乘法口诀背熟,能够根据乘法口诀写出四道算式或两道算式。
此外,还可以做一些加减混合、乘加、乘减的应用题。
小学二年级下册数学必背内容
(一)有余数的除法
①商要对着被除数的个位。②余数要比除数小。
被除数÷除数=商…….余数
被除数=除数×商+余数
1、()÷()=5……6,除数最小是(),被除数最小是()。
2、在应用题中,余数单位和被除数单位相同。
(二)万以内数的认识
1、数位顺序表按(从右往左)的顺序,依次是(个位)、(十位)、(百位)、(千位)、(万位)。
2、10个一是十,10个十是一百,10个一百是一千,10个一千是一万。
3、计数单位有:一、十、百、千、万,相邻两个计数单位间的进率是10.
4、最小的一位数是1,最大的一位数是9;最小的两位数是10,最大的两位数是99;最小的三位数是100,最大的三位数是999;最小的四位数是1000,最大的四位数是9999;最大的五位数是10000.
5、读数、写数都从高位起。
(三)长度单位
1、1千米=(1000)米
1米=(10)分米,1分米=(10)厘米,1厘米=(10)毫米,
1米=(100)厘米,1分米=(100)毫米。
2、长度单位转换时,大单位转小单位,数字增大(添“0”),小单位转大单位,数字减小(去“0”)。
3、手臂打开大约1米;(1拃)长大约10厘米,也是1分米;
(2分硬币)大约有1毫米厚;10张纸的厚度大约1毫米。
4、在表示较远距离时,用(千米)作单位,如(各类交通工具的时速),(马拉松长跑的路程),(铁路长),(两个城市间的路程)等。
5、用米作单位常见的有描述(树高)、(楼高)、(桥长)等。
(四)三位数的加法和减法
1、求“和”用加法;求“差”用减法;求“积”用乘法;求“商”用除法。
2、加数=和-另一个加数
被减数—减数=差
被减数=减数+差
减数=被减数-差
3、笔算三位数加减法时,从(个位)算起,相加满十向(前一)位进1。相减,不够减向(前一)位借1,借1作10。
(五)图形
1、长方形:4条边,(对边)相等,4个角都是(直角)。较长的边叫长(2条长),较短的边叫宽(2条宽)。
2、正方形:(四条边)都相等,4个角都是(直角)。
3、平行四边形:有4条边,(对边)相等;有4个角,(对角)相等;有2个钝角和2个锐角,还具有不稳定性。
(六)时间单位
1、钟面上有(12)个大格,(60)个小格。
时针走(1大格)是(1时);
分针走(1小格)是(1分),走一大格是(5分)。
秒针走(1小格)是1秒,走一大格是(5秒)。
2、时针走(1大格)是(1时),这时分针正好走(1圈),是(60)分,所以1时=(60)分。
3、分针走(1小格)是(1分),这时秒针正好走(1圈),是(60)秒。所以1分=(60)秒。
4、结束时间-开始时间=经过时间
结束时间-经过时间=开始时间
开始时间+经过时间=结束时间
5、在求时间时,可以列竖式计算。
减法时:要先算(分减分),再算(时减时),当“分”不够减时,向(时)借1当60分,60分与原来的“分”合在一起再减。
加法时:先算(分加分),再算(时加时),当分加分超过60分时,要把其中的60分转化为1时。
7时10分-3是50分=()2时40分+3时50分=()。
6、通常下午的时间转化成24时计时法,例如
下午3时20分就是(15时20分)
7、描述50米、100米跑步的时间要用(秒)作单位。
8、时针从数字3走到数字8经过时间是()。
分针从数字3走到数字8经过时间是()。
秒针从数字3走到数字8经过时间是()。
一、学情分析
总体情况:多数学生已经形成良好的学习习惯,上课能认真听讲,积极思维,课后认真按时完成作业。但也有一部分学困生,这些学生惰性强,上课不动脑筋思考问题,写作业效率低,不能主动及时订正。普遍存在的问题是学生做题较粗心,计算不用草稿纸,计算的正确率不高,解决问题不仔细审题,理解能力不够强,需要在复习中加强训练。
二、复习目标
1、一册教材学完,学生头脑中的知识结构处于杂乱、含糊、无序的状态,必须进行系统归类、整理、综合,帮助学生形成网状立体知识结构系统。归纳过程中,要让学生有序地多角度概括地思考问题,沟通内在联系。
2、进行区别比较,包括纵向、横向的比较。分析知识的意义性质、规律的异同,把各方面的知识像串珍珠一样连接起来,纳入学生的认知系统,便于记忆储存,理解运用。
3、复习内容要有针对性。对学生知识的缺陷、误区、理解困难的重点、难点、疑点进行有针对性的复习理解。复习课知识的覆盖面广、针对性和系统性要有机结合。
4、复习课不能忽视教师的主导地位:教师要主动理清知识体系,分层、分类、分项,拉紧贯穿全册教材的主线。发现学生普遍不会的,难理解的,遗漏的要重点讲。善于把多方面知识进行综合复习,注意知识的多变性、包容性。
5、教师要认真设计好每节复习课所重点讲解的例题。每一节复习课要环环相连,每道复习例题要体现循序渐进。一道复习例题击中多个知识点,起一个牵一发而动全身的作用。
6、复习中的练习题,不是旧知识的单一重复,机械操作,要体现知识的综合性,体现质的飞跃,训练学生思维的敏捷性、创造性。
7、复习课要发挥学生的主体作用,可以发动学生归类分项,发动学生出题,发动学生讨论,让学生去求异、联想、发散,主动探索,寻查知识点,让学生形成知识框架。
三、复习内容
1、复习分数乘法和除法时要使所有学生熟练掌握分数乘法和除法的意义,知道一道分数乘法或除法算式所表示的含义;使学生掌握分数乘法和除法的计算法则及乘除混合运算的计算方法。
2、复习分数四则混合运算顺序与整数四则混合运算顺序相同。整数的乘法运算定律在分数中同样适用(重点掌握乘法分配律)。
3、复习稍复杂的.分数应用题,使学生掌握稍复杂的分数应用题的结构特点、分析方法,熟练掌握算术解答的方法。
4、复习长方体和正方体,重点复习最基本的概念和计算(长方体的表面积、体积、容积的计算)和实际应用,体积单位、面积单位、长度单位之间的改写,加强几何知识内容的联系,注意综合运用,灵活掌握。
5、复习统计,进一步认识扇形统计图,了解条形统计图、折线统计图和扇形统计图的不同特点,能根据实际需要选择合适的统计图表示数据;了解中位数、众数的意义,会求一组数据的中位数和众数,能根据实际需要选择合适的统计量表示数据。
6、复习数学与购物,学会利用已有的知识和技能,对各种策略加以分析比较,选择最有利的够物策略;用表面积等知识,继续探索多个相同长方体叠放后使其表面积最小的最优策略,体会解决问题的基本过程和方法,提高解决问题的能力。
四、复习时要注意的几个问题
1、要重视查漏补缺。根据自己所教班级的情况,确定班级的复习计划,对相对比较薄弱的内容要加强复习和练习。
2、要注意区别对待不同的学生。对不同的学生要有不同的要求。在复习题的设计中要十分注意层次性。
3、要重视学生积极主动的参与到复习过程中去。可采用的一些形式:学生自己出题目练习,学生自己去整理知识;学生与学生之间去交流与合作。
这一册教材内容涉及的面比较广,基本概念比较多,也比较抽象,很多内容都是今后进一步学习的基础知识。通过总复习把本册内容进行系统的整理和复习,使学生对所学概念、计算方法和其它知识更好地理结合掌握,并把各单元内容联系起来,形成较系统的知识,使计算能力和解答应用题的能力得到进一步的提高,圆满完成本学期的教学任务,另外通过总复习,查缺补漏,使学习比较吃力的孩子,能弥补当初没学会的知识,打好基础。
知识点:
1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。
2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。
3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1时)
1时=60分1分=60秒
时间的两种标准写法:
8时零5分——8:05
8时55分——8:55
注:当两个表中时针表示的时间相同时,后面的时间减去前面的时间即可得到经过的时间。
练习题:
1、一节数学课上了40()。小红上午在校时间约4()。
2、小芳跳绳20下用了15()。课间休息10()。
3、小明吃饭用了20()。小明做20道口算题用了2()。
4、爸爸每天工作约8()。王艳跑50米用了10()。
5、南京乘火车去上海用了5()。晚间新闻联播时间大约是30()。
参考答案:
1、一节数学课上了40(分钟)。小红上午在校时间约4(小时)。
2、小芳跳绳20下用了15(秒)。课间休息10(分钟)。
3、小明吃饭用了20(分钟)。小明做20道口算题用了2(分钟)。
4、爸爸每天工作约8(小时)。王艳跑50米用了10(秒)。
5、南京乘火车去上海用了5(小时)。晚间新闻联播时间大约是30(分钟)
一、知识网络结构
二、知识要点
1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是
邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,
与互为邻补角。
+ = 180°; + = 180°; + = 180°;
+ = 180°。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。
= ;
5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,
其中一条叫做另一条的垂线。如图2所示,当= 90°时,⊥ 。
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当a ⊥ b时,= = = = 90°。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征:
①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样
的两个角叫同位角。图3中,共有对同位角:与是同位角;
与是同位角;与是同位角;与是同位角。
②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。
③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。
7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:
性质1:两直线平行,同位角相等。如图4所示,如果a∥b,
则= ; = ; = ; = 。
性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则= ; = 。
性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则+ = 180°;
+ = 180°。
性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥ 。
8、平行线的判定:
判定1:同位角相等,两直线平行。如图5所示,如果=
或=或=或=,则a∥b。
判定2:内错角相等,两直线平行。如图5所示,如果=或=,则a∥b 。
判定3:同旁内角互补,两直线平行。如图5所示,如果+ = 180°;
+ = 180°,则a∥b。
判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥ 。
9、判断一件事情的语句叫命题。命题由题设和结论两部分组成,有真命题和假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。
10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
平移后,新图形与原图形的形状和大小完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。
第六章实数
【知识点一】实数的分类
1、按定义分类:2.按性质符号分类:
注:0既不是正数也不是负数.
【知识点二】实数的相关概念
1.相反数
(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.
(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.
(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.
2.绝对值|a|≥0.
3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.
4.平方根
(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.
(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.
5.立方根
如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.
【知识点三】实数与数轴
数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.
【知识点四】实数大小的比较
1.对于数轴上的任意两个点,靠右边的点所表示的数较大.
2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.
3.无理数的比较大小:
【知识点五】实数的运算
1.加法
同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.
2.减法:减去一个数等于加上这个数的相反数.
3.乘法
几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.
4.除法
除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.
5.乘方与开方
(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.
(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.
(3)零指数与负指数
【知识点六】有效数字和科学记数法
1.有效数字:
一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.
2.科学记数法:
把一个数用(1≤<10,n为整数)的形式记数的方法叫科学记数法.
第七章平面直角坐标系
一、知识网络结构
二、知识要点
1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。
2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。
6、各象限点的坐标特点①第一象限的点:横坐标0,纵坐标0;②第二象限的点:横坐标0,纵坐标0;③第三象限的点:横坐标0,纵坐标0;④第四象限的点:横坐标0,纵坐标0。
7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐
标0,纵坐标0;⑤坐标原点:横坐标0,纵坐标0。(填“>”、“<”或“=”)
8、点P(a,b)到x轴的距离是|b|,到y轴的距离是|a| 。
9、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
10、点P(2,3)到x轴的距离是;到y轴的距离是;点P(2,3)关于x轴对称的点坐标为(,);点P(2,3)关于y轴对称的点坐标为(,)。
11、如果两个点的横坐标相同,则过这两点的直线与y轴平行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴平行、与y轴垂直。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。
12、平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点P(a,b)在一、三象限角平分线上,则P点的横坐标与纵坐标相同,即a = b ;如果点P(a,b)在二、四象限角平分线上,则P点的横坐标与纵坐标互为相反数,即a = -b 。
13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。
14、图形的平移可以转化为点的平移。坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点P(2,3)向左平移2个单位后得到的点的坐标为(,);将点P(2,3)向右平移2个单位后得到的点的坐标为(,);将点P(2,3)向上平移2个单位后得到的点的坐标为(,);将点P(2,3)向下平移2个单位后得到的点的坐标为(,);将点P(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为(,);将点P(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为(,);将点P(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为(,);将点P(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为(,)。
第八章二元一次方程组
一、知识网络结构
二、知识要点
1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为(为常数,并且)。使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。
3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。
4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。
5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。
6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
第九章不等式与不等式组
一、知识网络结构
二、知识要点
1、用不等号表示不等关系的式子叫不等式,不等号主要包括:> 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。
3、不等式的性质:
①性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。
用字母表示为:如果,那么;如果,那么;
如果,那么;如果,那么。
②性质2:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变。
用字母表示为:如果,那么(或);如果,那么(或);
如果,那么(或);如果,那么(或);
③性质3:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变。
用字母表示为:如果,那么(或);如果,那么(或);
如果,那么(或);如果,那么(或);
4、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。
5、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。
6、解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解(此时也称这个不等式组的解集为空集)。
7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。
第十章数据的收集、整理与描述
知识要点
1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。
2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。
3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。
4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。
5、画频数直方图的步骤:①计算数差(值与最小值的差);②确定组距和组数;③列频数分布表;④画频数直方图。
1、要有学习数学的兴趣。“兴趣是最好的老师”。做任何事情,只要有兴趣,就会积极、主动去做,就会想方设法把它做好。但培养数学兴趣的关键是必须先掌握好数学基础知识和基本技能。有的同学老想做难题,看到别人上数奥班,自己也要去。如果这些同学连课内的基础知识都掌握不好,在里面学习只能滥竽充数,对学习并没有帮助,反而使自己失去学习数学的信心。我建议同学们可以看一些数学名人小故事、趣味数学等知识来增强学习的自信心。
2、要有端正的学习态度。首先,要明确学习是为了自己,而不是为了老师和父母。因此,上课要专心、积极思考并勇于发言。其次,回家后要认真完成作业,及时地把当天学习的知识进行复习,再把明天要学的内容做一下预习,这样,学起来会轻松,理解得更加深刻些。
3、要有“持之以恒”的精神。要使学习成绩提高,不能着急,要一步一步地进行,不要指望一夜之间什么都学会了。即使进步慢一点,只要坚持不懈,也一定能在数学的学习道路上获得成功!还要有“不耻下问”的精神,不要怕丢面子。其实无论知识难易,只要学会了,弄懂了,那才是最大的面子!
第一章分式
1、分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2、分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减
3、整数指数幂的加减乘除法
4、分式方程及其解法
第二章反比例函数
1、反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2、反比例函数在实际问题中的应用
第三章勾股定理
1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形
1、平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3、梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形。
第五章数据的分析
加权平均数、中位数、众数、极差、方差
三年级下册数学学习方法
回顾和把握平时的困难,注意检查错误,填补空白,合理解决问题。
在实践中,我们要抓住一个难题。我省高考数学考试的难度在0.65左右,如果命题的方向不偏颇,大多数学生都能减少当前问题的难度。对于优等生,要提高难度,灵活运用知识,深入分析问题,提高解决问题的能力。在平时,练习的次数应该适度控制,以前做过的问题应该被发现,特别是容易出错的知识点。我们应该再看一遍,把概念搞清楚,这样才能减少类似问题再犯错误的可能性。有两个重要的问题,一个是战略,另一个是技能。高考就像战争一样,在战略上要轻视敌人,在战术上要重视敌人。在策略上,学生应该建立信心。毕竟复习时间已经够长了,应该掌握知识,这样答案才能立于不败之地。就技巧而言,回答问题比回答问题容易。在试卷中,难度一般是分散的:选择题的难度在后面,填空的难度也是一样的。大问题一般可以在前面或两个做,在后面的大问题中,一两个小问题是比较容易解决的。当你回答一个问题时,你必须先解决这些问题。当你遇到麻烦时,不要花太多时间。只要放弃,做一些简单的事情,专注于突破。考试时间比较紧,要分配合理的答题时间。当然,这会因人而异。中产阶层应该把重心往前移动,在前面选择,填的时间越多,问题越大,有的由前面的问题比较简单,就能拿到积分来把握。优等生要在掌握问题速度的前提下,在适当的重心转移的前提下解决问题。
三年级下册数学学习技巧
学会看题
高中比初中有更多的相关材料。高考是全社会关注的问题。因此,在高中的实践尤其多,一些学生购买更多的材料。因此,如何利用主题来掌握我们学习的知识,扩大我们所学的知识是学习的关键。我认为我们应该看更多的话题,更多的思考,看看解决材料中问题的方法,思考方法中的原因,这样我们就可以从更多的方法中学习。
有很多方法来消化它们。因此,我们将不得不选择去做这个问题,用一半的努力达到两倍的结果。我建议每天练习一次,每周做一组完整的试题,看2到3组试题,从中找出这段时间数学学习的关键知识,这些是我们常用来解决问题的方法,以及可以用来优化解题的方法。
课后巩固
很多学生在课后的学习过程中不注重巩固,只是觉得课堂上的一些知识就足够了,其实这是错误的。高中数学知识丰富,不像初中数学那么简单,却有着丰富的内涵。如果它不能进一步挖掘,那么它只是掌握这些知识的表面。因此,我不知道如何理解,也不能使用这些知识时,我做我的练习。
做练习是必要的,但有些学生只是做练习,而不是巩固这些知识,把知识扩展到做练习,经常是在练习完成后完成练习。这和中学问题没有什么区别。事实上,我们也应该把在这个练习中使用的知识联系起来,这样我们才能理解正在使用的知识,并且能够掌握更多的知识。也可以发现知识点是关键,也可以发现如何链接相关知识的难题。
第一章
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
(一)单项式与单项式相乘
单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
(二)单项式与多项式相乘
单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。
(三)多项式与多项式相乘
多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。平方差公式.两数和与这两数差的积,等于它们的平方之差完全平方式:.
第二章
一、余角与补角
1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。
2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。
3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。
4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等二、对顶角
1、两条直线相交成四个角,其中不相邻的两个角是对顶角。
2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
3、对顶角的性质:对顶角相等。
4、同位角、内错角、同旁内角、平行线的判定方法
1、同位角相等,两直线平行。
2、内错角相等,两直线平行。
3、同旁内角互补,两直线平行
平行线的性质
1、两直线平行,同位角相等。
2、两直线平行,内错角相等。
3、两直线平行,同旁内角互补
复式统计表
1、把两个或两个以上有联系的单式统计表合编成一个统计表,这个统计表就是复式统计表。
2、观察、分析复式统计表要先看表头,弄清每一项的内容,再根据数据进行分析,回答问题。
两位数乘以两位数
口算乘法
1、两位数乘一位数的口算方法:
(1)把两位数分成整十数和一位数,用整十数和一位数分别与一位数相乘,最后把两次乘得的积相加
(2)在脑中列竖式计算。
2、整百整十数乘一位数的口算方法:
(1)先用整百数乘一位数,再用整十数乘一位数,最后把两次乘得的积相加。
(2)先用整百整十数的前两位与一位数相乘,再在乘积的末尾添上一个0。
(3)在脑中列竖式计算。
3、一个数与10相乘的口算方法:
一位数与10相乘,就是把这个数的末尾添上一个0。
4、两位数乘整十数的口算方法:
先用这个两位数与整十数十位上的数相乘,然后在积的末尾添上一个O。
小技巧:口算乘法:整十、整百的数相乘,只需把0前面的数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。
如:30×500=15000可以这样想,3×5=15,两个因数一共有3个0,在所得结果15后面添上3个0就得到30×500=15000
笔算乘法
先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。
注意事项
估算:18×22,可以先把因数看成整十、整百的数,再去计算。
→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)
2、有大约字样的一般要估算。
3、凡是问够不够,能不能等的题,都要三大步:
①计算、②比较、③答题。→别忘了比较这一步。
几个特殊数:
25×4=100,125×8=1000
4、相关公式:
因数×因数=积
积÷因数=另一个因数
1.平均分的含义:把一些物品分成几份,每份分得同样多,叫做平均分。
除法就是用来解决平均分问题的。
2.平均分里有两种情况:
(1)把一些东西平均分成几份,求每份是多少;用除法计算,
总数÷份数=每份数
(2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数
3、除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。
除法算式各部分名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。
被除数÷除数=商。
被除数÷商=除数
除数×商=被除数。
4.用2~6的乘法口诀求商
1、求商的方法:
(1)用平均分的方法求商。
(2)用乘法算式求商。
(3)用乘法口诀求商。
2、用乘法口诀求商时,想除数和几相乘的被除数。
一句口诀可以写四个算式。(乘数相同的除外)。
5、解决问题
解决有关平均分问题的方法:
总数÷每份数=份数总数÷份数=每份数
用乘法和除法两步计算解决实际问题的方法:
(1)所求问题要求求出总数,用乘法计算;
(2)所求问题要求求出份数或每份数,用除法计算。
第三单元图形的运动
1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。(剪纸游戏)
成轴对称图形的字母:
ABCDEHIKMOTUVWXY
2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。平移只能上下移动或左右移动。
3、旋转:体绕着某一点或轴进行圆周运动的现象就是旋转。例如:旋转木马、转动的风扇、转动的车轮等。
具体内容 重点知识 学生的实际学习困难
分数的产生和意义 单位“1”的意义:一个物体、一些物体都可以看作一个整体,可以用自然数1来表示,通常把它叫做单位“1”。
分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
分数单位意义:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
分数与除法的关系:被除数÷除数=被除数除数 ,反来,分数也可以看作两个数相除,分数的分子相等于被除数,分母相等于除数,分数相等于除号。
“求一个数是(占)另一个数的几分之几”的问题的解题办法:用一个数除以另一个数。
真分数和假分数 真分数的意义:分子比分母小的分数叫做真分数。
真分数的特征:真分数﹤1。
假分数的意义:分子比分母大或等于分母的分数叫做假分数。
假分数的特征:假分数≦1。
带分数的意义:由整数(不包括0)和真分数合成的数叫做真分数。
带分数的读法:先读整数部分,再读分数部分,中间加“又”字。
带分数的写法:先写整数部分,再写分数部分,分数部分的分数线与整数的中间对齐。
假分数化成整数或带分数的方法:用分子除以分母。当分子是分母倍数时,能化成整数;当分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。
圆、圆柱、圆柱必背公式
1、在同圆或等圆内,直径的长度是半径的2倍,公式d=2r;半径的长度是直径的一半,公式r=d÷
2、已知直径求周长:
圆的周长=圆周率×直径,直径=周长÷圆周率,
公式C=πd, 公式d=C÷π
3、已知半径求周长:半径=周长÷圆周率的2倍,
圆的周长=2×圆周率×半径, 公式r=C÷2π
公式C=2πr
4、已知半径求面积:圆的面积=圆周率×半径的平方,公式S圆 =πr?
5、已知直径求面积:圆的面积=圆周率×(直径÷2)的平方,公式S圆 =π(d÷2)?
6、圆柱的侧面积=底面的周长×高
圆柱的底面周长=侧面积÷高
圆柱的高=侧面积÷底面周长
7、圆柱的表面积=侧面积+2×底面积
8、圆柱的体积=底面积×高
圆柱的高=体积÷底面积
圆柱的底面积=体积÷高
9、一个圆锥的体积等于与它等底等高的圆柱体积的三分之一 。
圆锥的高等于体积的3倍除以底面积,公式h=3v÷s;
圆锥的底面积等于体积的3倍除以高,公式s=3v÷h。
10、环形的面积=大圆面积-小圆面积,S环 =πR?-πr?
11、体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。
即圆锥的底面积=圆柱底面积×3,圆柱底面积=圆锥底面积÷3
12、体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。
即圆锥的高=圆柱的高×3,圆柱的高=圆锥的高÷3。
一、百分数的`意义:
表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。
注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。
注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
二、百分数应用题
1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙
求乙比甲少百分之几:(甲-乙)÷甲
3、求一个数的百分之几是多少。一个数(单位“1”)×百分率
4、已知一个数的百分之几是多少,求这个数。
部分量÷百分率=一个数(单位“1”)
5、折扣、打折的意义:几折就是十分之几也就是百分之几十
折扣、成数=几分之几、百分之几、小数
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八点五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半价
6、利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间
税后利息=利息-利息的应纳税额=利息-利息×5%
注:国债和教育储蓄的利息不纳税
7、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几
(2)求甲比乙多百分之几——(甲-乙)÷乙×100%
(3)求甲比乙少百分之几——(乙-甲)÷乙×100%
数学分数的加减法知识点
1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。
2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。
3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。
小学数学必背关系表达式
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
培养下面两个好的数学学习习惯。
一、认真完成家庭作业的习惯
根据德国心理学家艾宾浩斯“遗忘曲线”的原理,人有在学习新知识后及时练习便不容易忘掉,如果不及时练习,就很容易遗忘的记忆规律。因此,巩固当天所学,认真完成家庭作业很有必要。对于这点,我要求学生作到:做作业前,先看课本回顾一下当天所学的知识,然后再做作业,还要做到“三到一检查一签字”。“三到”:眼到、心到、手到,眼睛看清题目,心里想着计算,手要把答案写得正确、美观;
“一检查一签字”:做完作业后,仔细检查有没有出错,有错要及时订正,最后再让家长签字。老师及时批改后的错题,记录在《错题集》上,并在作业本上订正。
二、快速、正确口算的习惯
数学上低年级的口算是今后计算的基础,要养成快速、正确口算的习惯,还要在掌握一定的口算方法的基础上多练习。二年级上期重点练习100以内的加、减法和表内乘法以及乘加、乘减的计算,100以内的加减法难点的是进位加法和退位减法,这需要老师在具体的计算方法上进行分类指导,而表内乘法以及乘加、乘减的计算就需要学生熟记乘法口诀,教学时,老师要引导学生采用有效的具体的记忆方法有针对性地多记、多练、熟记。课上课下也可以用牌游戏的形式练习连加、连减或乘法,经常练习,熟能生巧,口算速度自然就提高了。
也可以借助一些电脑软件或者app,程序自动出题,自动批改,孩子们还可以PK口算成绩,充分调动了孩子们的学习积极性。
养成好习惯,关键在头三天,决定在一个月。要想使好习惯持之以恒,刚开学的一个月很关键。作为二年级的数学老师,开学后我要时时处处提醒自己以身作则,改掉以往易冲动、处理问题简单、粗暴的坏毛病,时时处处提醒自己按上面的养成教育的要点去悉心培养学生的好的数学学习习惯。
因为二年级学生的年龄关系,有时习惯容易反复,所以还要和家长多沟通,教给家长具体的家庭培养方法,让家长配合老师共同抓,反复抓,抓反复,才能使习惯成自然。
1整式
1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数。单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。
2、单项式的系数:是指单项式中的数字因数;
3、单项数的次数:是指单项式中所有字母的指数的和。
4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里ab是次数项,其次数是6;
多项式的项是指在多项式中,每一个单项式。特别注意多项式的项包括它前面的性质符号。
5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
6、单项式和多项式统称为整式。
2整式的加减
1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。
2、同类项必须同时满足两个条件:
(1)所含字母相同;
(2)相同字母的次数相同,二者缺一不可。同类项与系数大小、字母的排列顺序无关
3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
5、去括号法则:去括号,看符号:是正号,不变号;
是负号,全变号。
6、整式加减的一般步骤:
一去、二找、三合
(1)如果遇到括号按去括号法则先去括号。
(2)结合同类项。
(3)合并同类项
一、圆柱
1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
圆柱也可以由长方形卷曲而得到。
两种方式:
1、以长方形的长为底面周长,宽为高;
2、以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的
3、圆柱的特征:
(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高
4、圆柱的切割:
①横切:切面是圆,表面积增加2倍底面积,即S增=2πr?0?5
②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的`面积,即S增=4rh
5、圆柱的侧面展开图:
①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形
②不沿着高展开,展开图形是平行四边形或不规则图形
③无论怎么展开都得不到梯形
圆柱变形记,圆柱怎么变形成长方体?与长方体又有什么联系?怎么借助长方体的体积计算圆柱的体积?
6、圆柱的相关计算公式:
底面积:S底=πr?0?5
底面周长:C底=πd=2πr
侧面积:S侧=2πrh
表面积:S表=2S底+S侧=2πr?0?5+2πrh
体积:V柱=πr?0?5h
考试常见题型:
①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长
②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积
③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积
④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积
⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积
以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算
无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积
烟囱通风管的表面积=侧面积
只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装
侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池
侧面积+两个底面积:油桶、米桶、罐桶类
二、圆锥
1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。
2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高
3、圆锥的特征:
(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征:圆锥有一条高。
4、圆锥的切割:
①横切:切面是圆
②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh
5、圆锥的相关计算公式:
底面积:S底=πr?0?5
底面周长:C底=πd=2πr
体积:V锥=1/3πr?0?5h
考试常见题型:
①已知圆锥的底面积和高,求体积,底面周长
②已知圆锥的底面周长和高,求圆锥的体积,底面积
③已知圆锥的底面周长和体积,求圆锥的高,底面积
以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算
圆柱和圆锥的关系
1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
4、圆柱与圆锥等底等高,体积相差2/3Sh
小学数学单位换算公式大全
长度单位换算:
1千米=1000米。
1米=10分米。
1分米=10厘米。
1米=100厘米。
1厘米=10毫米。
面积单位换算:
1平方千米=100公顷。
1公顷=10000平方米。
1平方米=100平方分米。
1平方分米=100平方厘米。
1平方厘米=100平方毫米。
体(容)积单位换算:
1立方米=1000立方分米。
1立方分米=1000立方厘米。
1立方分米=1升。
1立方厘米=1毫升。
1立方米=1000升。
重量单位换算:
1吨=1000千克。
1千克=1000克。
1千克=1公斤。
人民币单位换算:
1元=10角。
1角=10分。
1元=100分。
时间单位换算:
1世纪=100年。
1年=12月。
大月(31天)有:135781012月。
小月(30天)的有:46911月。
平年2月28天,闰年2月29天。
平年全年365天,闰年全年366天。
1日=24小时1时=60分。
1分=60秒1时=3600秒。
数学因数与倍数知识点
1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。
2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。
4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。
5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2、一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。
相关热词搜索: 知识点 下册 年级 总结年级下册数学知识点20篇 总结年级下册数学知识点(推荐20篇) 年级数学下册知识点归纳总结